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ABSTRACT 

The first section of this report deals with modules of 
coherent systems.  We define modules in terms of their 
interaction with the min path sets of the coherent system. 
This leads to the same notion as given in [1], except we 
allow the set of all components to be a module, while [1] 
excludes this set as a module.  The resultr. concerning 
modules found in [1], most notable being the Thrt.c Modules 
Theorem, are given new proofs based on the properties of min 
path sets In the presence of modules.  The results of [I] 
are slightly augment:cc' by the two modules lemma, which gives 
necessary conditions for a set and its complpncnt to be a 
module, and by another characterization of modules. 
Proposition 4, which results when blocking systems are 
introduced. 

The second section defines blocking systems and shows that 
blocking systems and coherent systems are fundamentally the 
same, however, the emphasis of Interest is different. 
Modules are interpreted for blocking systems as sets which 
can be condensed, a term made precise; Proposition 3 
suggests how typical blocking systems can be decomposed. 
Some suggestions for further research are given. 
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PREFACE 

In this report,  some known results concerning 

modules of coherent systems from reliability are 

given with new proofs.     The relationship of 

coherent  systems to blocking systems is pointed 

out, as well as an interpretation of modules for 

blocking systems. 

( 

*** 
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MODULES OF COHERENT SYSTEMS AND THEIR 
RELATIONSHIP TO BLOCKING  SYSTEMS 

by 

Richard Butterworth 

1. MODULES OF COHERENT SYSTEMS 

The goal of this section is to illustrate a proof of the "Three Modules 

Theorem" which is particularly suited to the identification of coherent systems 

with blocking systems. The proof which appears in [1] Is of an algebraic nature 

corresponding to the functional relationship by which modules are defined there 

(see our Proposition 2). The proof given here is of a set-theoretic nature, giving 

another view to this established result. 

A. Coherent Systems 

Coherent systems arise In the study of reliability when one considers a 

physical system whose operation is classified as either functioning or failing, and 

when this operation is determined by the Joint functioning or failing of some 

finite set of components C . A "coherent system" Is one for which the replacement 

of a failed component by a functioning one will not  cause a functioning system to 

fail. The system which functions if and only if all Its components function is 

called a series system, while the system which fails If and only if all its 

components fall is called a parallel system. These are both special cases of the 

k-out-of-n system, which is one of n components which functions whenever k or 

more of its components function, where 1 i. k <_ n . 

Q 
More precisely now, let C be a finite nonempty set and {0,1}  denote all 

r 
functions on C to {0,1} . For X e {0,1} , we say X is a joint perfomanoe 

of the components C , with the interpretation: V c e C , 



!1 if component c functions 

0 If component c fails. 

Q 
A system is any function $    on  {0,1}  to {0,1} , with the interpretation that, 

for a Joint performance X , 

the system functions 

(0 if 
♦ (X) 

the system fails. 

For joint performances X and Y , we say X <_ Y whenever for all c E C , 

X(c) <_ Y(c) . Then (C,((i) is a coherent system  whenever: 

(1) if X^Y , then ((.(X) <. (KY) . 

Some components may have no effect on the system's behavior. We classify 

these as Inessential components; all components not inessential will be called 

essential. Precisely, a component c Is inessential to (C,^) when, V X , 

*(0c,X) - (J)(1C,X) , where (lc,X)(e) - X(e) if e + c,-l if e-c. 

The usual definition of coherent systems requires. In addition to (1) above, 

(2) at least one component is essential to (C,4i) . 

We remark this is equivalent to 

(2')  ())(0) - 0 and (j)(l) - 1 , where 0 is identically zero and 1 is 

identically one, 

which Is how (2) is stated in [3], [6], and elsewhere. We have not chosen to 

formally require (2) for coherent systems In order to simplify their idantificatlon 

with blocking systems. On the other hand. In our treatment of modules, as In [1], 

we confine our attention to coherent systems, all of whose components are 

essential. 

Examples of coherent systems with all components essential are the series 



system on    C  ,  for which    (j)(X) ■ Min {X(c)   |  c e C}  ,  the parallel system on   C , 

for which    ({i(X)  ■ Max {X(c)   |  c e C}  ,  and the k-out-of-n system on any n-element 

set    C  ,  for which    «.(X) ' 1   <**>    I    X(c)  >_ k . 
ceC 

Coherent  systems are examined in  [3],   [6],   [5]  and  [1], while   [2]  gives an 

excellent application of coherent systems in formulating a class of life distribu- 

tions,  those with increasing hazard rate average. 

B.    Paths and Min Paths 

The following notions are well defined for any function    <))    on    {0,1}      to 

r 
(0,1} .  For A C C , let I. e {0,1}   be «1 on A,-0 on C-A. A path 

(aut)  of (C,*)  is any set P(K) c C such that <J)(Ip) - 1 ^Clc „) - 0) . A 

mir. path (min cut)   is any path (cut) which is set minimal with respect to being a 

path (cut). As for coherent systems, knowing all mln paths or all min cuts is 

equivalent to knowing the function $   , Indeed <j)(X) « 1 <5=> 3 mln path P 3 X 2. Ip 

or ((i(x) • 0 <=> 3 mln cut K 3 X <_ 1_ K . 

We give a characterization of coherent systems in terms of their mln path sets. 

It is easily proven from the definitions. 

Proposition 1; 

If  (C,(^)  is a coherent system, then the family of all mln paths, P , 

satisfies: 

(1) V P , Q e P , we have P ^ Q . 

(2) UP ■ the set of essential components of (C,^) . 

Conversely, if P is a family of subsets of C , a finite nonempty set, and if P 

satisfies (1), then there exists a uniquely determined coherent system (0,4) 

which has P as its family of mln paths.  It will have UP as its set of essential 

components.  Indeed, we can define <KX) ■1'3=>3 PEPSX^I-. 



C.     Duality 

If     1 e  {0,1}       Is  identically one on    C  ,   then for    (()d(X) - 1 - <|)(1 - X)   , 

r d 
where    X e  {0,1}'  , and    (€,4»)     is a coherent system,     (C,({)  )    is also a coherent 

system,   the dual of    (C.dO   .     The paths and cuts of     (0,$)    are the cuts and paths 

respectively of its dual     (€,$  )   .    This notion of duality is a reasonable one; 

(4>d)d - 0 . 

These observations imply a dual proposition to Proposition 1, in which we just 

replace every occurence of the word "path" by the word "cut" and change the last 

line to read: "Indeed, we can define i)>(X)-0<=>3 PeP3X<I it 

'C-F  ' 

D.     Modules 

From now on we will assume our coherent systems have no inessential components, 

equivalently that the union of all min paths is    C  .    This will avoid needless 

complications, particularly where modules are concerned,  and brings our assumptions 

into  line with those made  in  [1], 

A module of a coherent system is a subset of the components which functions as 

a coherent system itself within the given system.    Let    (C,4>)    be a coherent 

system with min path sets    P .    We say a nonempty set    A c C    is a module of 

(C,*)     if    V   P    and    Q E P 3 PA + 0   and    QA + 0  , we have    PA U Q(C - A)  e  P . 

This definition is motivated by our needs.    However,  it does correspond  to the 

notion of a module given in [1],  except there the set    C    of all components  is not 

a module, while, under our definition,  it always is.    The following characterization 

of modules is shown in [1]   to be equivalent to our definition. 

Proposition 2; 

Let    (C,^)    be a coherent system with all components essential and    A    be a 

nonempty subset of    C  .    A    is a module of    (C,<t>)   <s={>  <J>(X) - iKr(xiA) ,X|C_A)   . 

where: 



XL  is X restricted to A 
'A 

(A,!")  is a coherent system 

({c } U (C - k),ty)    is a coherent system, and 
A 

(r(x|A),XIc_A)(c) - X(c) for c e C - A , - r(x|A)  for c • cA . 

We remark that if A is a module, then T    and ij< in Proposition 2 are 

uniquely determined. We can therefore refer unambiguously to the coherent system 

(A,r)  as a module of  (C,4i) whenever A is a module of  (C,4>) .  Since C  is 

always a module,  (C,4>)  is always a module of itself. Also, every one element 

subset  {c} of C is a module.  Further consequences of these definitions are 

that the min paths and min cuts of  (A,r) , a modulr of  (C,^) , are the nonempty 

Intersections of A with the min paths and min cuts respectively of  (C,^) .  This 

leads to the characterization of modules given in Proposition 4. 

It is easy to see that (A,r)  is a module of (C,^)  if and only if  (A,r ) 

is a module of  (C,(|> ) . Using this, one can give a dual theorem for each of our 

theorems in which paths are replaced by cuts, similar to what was done in Part C 

above for Proposition 1. 

E.  Three Modules Theorem 

Intersection Lemma; 

Let A and 5 be modules of (CA)   > a coherent system. Then AB • 0 or 

AB is a module of  (0,$) . 

Proof; 

Suppose AB ^ 0 . If P and Q are min paths which intersect AB , then 

PA U Q(C - A)  is a min path which intersects B , so  (PA U Q(C - A))B U Q(C - B) 

■ PAB U Q(C - AB)  is a min path, showing AB is a module. \ | 

Difference Lemma; 

Let A and B be modules of- (C,())) , a coherent system with all components 



essential.  If A - B and B - A are both nonempty, then both are modules. 

Proof; 

It Is sufficient to show A - B is a module whenever A - B and B > A are 

both nonempty.  If AB • 0 , then A - B - A , so we assume AB ■f 0 . In a very 

general way, suppose we want to show a nonempty set H c C is a module. The 

assertion, if P and Q are min paths such that PH ^ 0 and QH 4 0 t then 

PH U Q(C - H)  is a path, implies (hence is equivalent to) the modularity ot H . 

Simply show no min path is strictly contained in PH U Q(C - H) by assuming not 

and reach a contradiction by using the hypothesis about H .  It then follows that 

PH U Q(C - H)  is In fact a min path. Accordingly, we will show that 

R ■ P(A - B) U Q(C - (A - B))  is a path whenever P and Q are min paths both 

intersecting A - B . 

Let E denote A U B . Suppose P and Q both intersect A - B , P and 

Q being min paths, and set R ■ P(A - B) U Q(C - (A - B)) .  For 

R. ■ PA U Q(C - A)  and R • QA U P(C - A) , both are min paths by modularity of 

A . If PAB - 0 , then R. C R , showing R is a path, so we assume PAB + 0 . 

But then both R,  and P intersect B , so R- « R^B U P(C - B) » 

PA U Q(B - A) U P(C - E)  is a min path. Now, if QAB + 0 , then ^   and Q 

intersect AB , a module, so QAB U R-jCC - AB) ■ R is a min path, as needed. How- 

ever, we show QAB • 0 leads to a contradiction: 

either P(B - A) + 0 which =<► R2 and P Intersect B => 

PB U R~(C - B) 3 R, , a contradiction 2      + 2 

or P(B - A) ■ 0 =*> P C R. =«> Q(B - A) ■ 0 . Now choose a min path 

P a P (B - A) f 0 (possible because we are assuming all components essential) 

=* R. - P B U P(C - B)  is a min path, intersecting A , so QA U R, (C - A) 
HO *♦ 

- Q(A - B) U P (B - A) U P(C - E) 3 R2 - Q(A - B) U P(C - E) , a 

contradiction. |! 



Two Modules Lemma; 

Let A be a nonempty proper subset of C and  (C,<t))  be a coherent system 

all of whose components are essential, with min paths P .  If A and C - A are 

modules of  (C,(Ji) , then: 

either   (1)     V   PeP.PcA    or    PcC-A 

or (2)     V   P e P , PA 4 ^    and    P(C - A)  »f 0 . 

If (1) holds, we say A and C - A are in parallel, while if (2) holds, we say 

A and C - A are in series. 

Proof; 

Suppose (1) fails while A and C - A are modules. Then 3 P e P such 
o 

that P A =f 0 and P (C - A) + 0 .  It follows that (2) holds, for if Q c P is 
o o 

such that Q c A , then P A U Q(C - A) » P A is a min path, however, P A • P  , 

which is a contradiction.  The same reasoning shows ^ QEPJQCC-A, 

The parallel and series designation is not arbitrary; indeed if  (A,r') and 

(C - A,!"')  are modules of  (C,(|i) , then 

♦ (x) - Max {r'(x|A)tr"(xic_A)} 

or 

- Min {r'(x|A),r"(xlc<_A)} 

according as (1) or (2) holds respectively. || 

Three Modules Theorem; 

Let  (C,<>)  be any coherent system with all components essential.  If A and 

B are modules such that A - 3 , A3 and  B - A are nonempty, then 

(1)  A - B , AB and B - A are modules. 
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(2) A A B and A U B are modules. 

(3) The three modules A - B , AB and B - A appear In either parallel or 

series. 

Proof; 

(1)   follows by applying  the previous lemmas.     (2)  and  (3) will follow    by 

using the  lemma below and repeated application of  the definitions. 

Lemma; 

Under the hypothesis of the theorem, set A.. = A - B , A = AB , A » B - A 

and E - A U B . Then 

either (1) V min paths P 3 PE + 0 we have PE C A  or PE c A      or 

PE C A3 

or    (2) V min paths P 3 PE f 0 we have PA =f 0 , PA + 0 and 

PA3 + 0 . 

Proof; 

In general,   if     (A,r)     is a module of     (C,^)    and    B    is any nonempty  subset 

of    A  ,   then    (8,1")     is a module of     (A,r)     if and only  if it  is a module of 

(C,^)   .     This allows us to apply  the  two modules lemma  to    A.  U A.    and    A. U A_   . 
< 1   z      Z   J 

Recall we have set E » A- U A2 U A- . 

Suppose 3 min path P 3 P E + 0 and P E C A, .  Then the above remark 

shows (1) holds, provided "jjf   min path R 3 RA. + 0 and RA. + 0 .  But if 3 min 

path R 3 R A. + 0 and R A, + 0 => P (A. U A.) U R (A, U (C - E)) is a min 
O     01 O J 01    ZOJ 

path which intersects both A. and A, which is a contradiction. 

The above fails if and only if V min paths P 3 PE "f 0 we have PE d A- . 

Then the above remark shows (2) holds, provided 3 min path P 3 PA.. ^ 0 and 

PA, + 0 .  Let P  be a min path 3 P A. A 0 . Either P A. 4« 0 or P A0 + 0 . 
J o o2' ol        o3 
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Without loss of generality, we assume    P A.  4 ^  •    Let    Q      be a min path 

3 Q A. + J)    =^  Q   (A, U Aj U P  (A. U  (C - E))    is a min path which intersects both 

A.     and    A_   .   | | 

Returning to the theorem, suppose first (1) of the above lemma holds. To 

show E « A U B  is modular, if P and Q are mln paths 3 PE 4 ^ and QE + 0 , 

we show PE U Q(C - E)  is a min path.  This is clearly true if PE C A. U A. and 

QE c A. U A2 or if PE c A2 U A  and QE C A» U A- . One remaining possibility 

is PE c A.  and QE c A, .  Let P  be a min path 3 P A. + 0 . Then 
— i        — j        o ' o I   ' 

P E c A. and P (A. U A,) U (KA. U (C - E)) - P A0 U Q(C - E)  is a min path which o   ~    1 OZJ      1 o 2 

intersects A. U A, , so PU, U A-) U (P A„ U Q(C - E))(A_ U (C - E)) - 

PE U Q(C - E) is a min path, which was to be shown. The only remaining 

possibility,  PE C A_ and QE C A. , is similar. 

The modularity of A U B shown above allows us to apply the two modules lemma 

to A1 U A2 U A3 , then to A1 U A2 .  We conclude if  (A U B,r) , (A ,1^) , 

(A-.r»)  and  (A-,?.) are the modules of  (C,f)  indicated above, when (1) of the 

above lemma holds, then r(X|    ) - Max (MX1 ),-  {X'     ),r (x!  )} , i.e., the 
A U B *   A«    Z   A*   Jf A* 

modules A. , A_ and A, appear in parallel.  This shows A A B » A. U A.  is 

also a module. 

Now suppose (2) of the above lemma holds. We show E is a module.  Let P 

and Q be min paths 3 PE + 0 and QE + 0 . By definition, 

P(A2 U A.) U QCA. U (C - E))  is a min path intersecting A. U A. , so 

P(A1 U A2) U (P(A2 U A3) U Q(A1 U (C - E)))(A3 U (C - E)) - PE U Q(C - E)  is a 

min path, showing E is a module. Again by using the two modules lemma, if 

(A U B.D , (A^I^) , (A2,r2) and  (A^iy are modules of  (C,^) , when (2) of 

the above lemma holds, then r(X|    B) - Min Cri(X|  )»r2(XlA ),r3(X'A )} ' i•e■, 

the modules A.. , A- and A- appear in series. Again, it follows A A B is a 

module. | I 
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F. Extentlons to Systems with Inessential Components 

We have focused our attention on coherent aystems with all components essential, 

principally to duplicate the results of [1] and also because the statements in this 

case are aesthetically more pleasing. We will give a brief review of how the 

previous results extend without this hypothesis. 

Firstly, the definition of a module remains the same in the presence of 

Inessential components.  Proposition 2 also remains the same, except that we can no 

longer assert uniqueness of the function T    when the module A consists entirely 

of inessential components.  In fact, T    could be either identically one or 

Identically zero on {0,1}  . Either choice would satisfy the equation in 

Proposition 2.  Of course, the assertion relating the mln paths and min cuts of 

(A,r) and (C,$) is no longer valid in this case. 

To maintain the difference lemma when inessential components may be present, 

we can replace the hypothesis that A - B and B - A are both nonempty by the 

statement, A - B and B - A each contain at least one essential component. The 

Intersection lemma did not assume any components to be essential. The two modules 

lemma remains valid, except that some care must be taken in stating the para^el- 

series representation because of the ambiguity of  F' and T" when A and 

C - A respectively consist entirely of inessential components. The three modules 

theorem must be altered by replacing the assumption that A - B , AB and B - A 

are nonempty by the hypothesis that A - B , AB and B - A each contain at least 

one essential component.  The proof of each new lemma and theorem are exactly as 

before. 

G. An Application 

An excellent application of the three modules theorem concerns "maximal" 

modules. We give the results here and refer the interested reader to [1] for the 

proof. 

We will say a module M ■f C of  (C,ij))  is maximal  if it Is set maximal with 

respect to being a module other than C . 
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Let M be the set of maximal modules of (C,<{>) , a coherent system with all 

components essential.  Then 

either (i) M Is a partition of C 

or    (2) ifl = {C - M I M c M} is a set of modules which partition C and 

which appear in either series or parallel. 
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2. BLOCKING SYSTEMS 

Blocking systems are studied extensively in [7], [4] and [8]. We show below 

they are fundamentally the same mathematical notion as coherent systems. 

A basic notion for what follows is that of a clutter. We say a family F of 

subsets of the set C is a clutter on C whenever no member of F contains 

another member of F . This is exactly the property which characterizes those 

families of subsets of C which are the min path sets of some coherent system with 

components C . 

Let C be a finite nonempty set and let P and K    be families of subsets of 

C . We say (C,P,K) is a blocking system  when 

(1) both P and K are clutters on C 

and 

(2)    V    A C c   ,   either     SPePaPCAor    aKeKsKSc-A, 

but not both. 

Our definition follows that given in [7], except that there the set C may be 

empty. 

If (C,^) is a coherent system, then for every subset A c c , either A is 

a path Ud.) "1) or C - A is a cut (^(1.) " 0) . but not both. It follows 

that if P and K    are the min paths and min cuts respectively of (C,4>) , then 

(C,P,K) is a blocking system. This mapping of coherent systems to blocking 

systems is one-to-one since a coherent system is characterized by its min paths and 

min cuts. Further, we see the mapping Is onto because the blocking system (C,P,K) 

is the image of the coherent system (C,^) when 

. (1 if (c | X(c) - 1} => P 
*(x) S { 

(0 if {c I X(c) - 0} ^ K 

for some P E P 

for some K c K 
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We will express this one-to-one onto mapping between coherent systems and blocking 

systems by writing (C,^) - (C,P,K) whenever  (C,^)  is mapped to (C,P,<) . In 

[A], a correspondence from blocking systems into switching functions (all functions 

C 
4) on {0,1}  to  {0,1})  is mentioned briefly, however, the "monotonic" switching 

functions (those 9 for which (C,I$I)  is a coherent system) are not identified. 

In [7], the blocking system ^(C,P,K)    has as its dual (C,K,P) .  This notier 

of duality coincides with ours since  (C,({)) - (C,P,K)  if and only if 

(C,/) - (C,K.P) . 

Some results in the study of coherent systems have relevant meaning for 

blocking systems.  For example, our Proposition 1 says that given a nonempty set C 

and a clutter P on C , there exists a unique clutter K on C such that 

(C,P,K)  is a blocking system.  This result is also given in [7]. 

The min-max theorem given in [7] has a very intuitive interpretation and proof 

in terms of coherent systems.  This theorem says that if  (C,P,K)  is a blocking 

system and f a real-valued function defined on C , then 

max min f(c) » min max f(c) . 
PeP ceP      KeK ceK 

To interpret this result for coherent systems, we see it is equivalent to state the 

theorem for functions f which are nonnegative. Given any such f , take f(c) 

to be the functioning lifetime of component c in the coherent system corresponding 

to  (C,P,K) .  If all components begin service simultaneously, then the system 

functions until the first component to fail from each min path has failed, or 

max min f(c) . Equlvalently, the system fails as soon as every component in some 
PeP ceP 

mln cut has failed, or min max f(c) . 
KeK ceK 

The notion of a module for a blocking system could be stated directly using 

the definition and correspondence, however, we will give another characterization 

and then show its equivalence to modules. 
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Let  (C,P,K) be a blocking system. We say a nonempty set A c C can be 

oondeneed  if 

either (1)  A C C - UP 

or    (2)  (A,P|A,KlA) 

is a blocking system, where for a family F of subsets,  F| .  denotes the nonempty 

Intersections of A with the elements of F , that is,  {FA | F e F , FA + 0} . 

We remark that condition (2) is not equivalent to PL  and K\      just being 

clutters.  For example, take C - {1,2,3,4,5} , P- {{1,3.5},{2,3,4},{2,5},{1,4}) , 

K - {{1,3.5},{2,3,4},{1,2},{4,5}} and A - {1,2,4,5} . Then P|A and KlA are 

clutters, however,  (A.PL.KL)  is not a blocking system. 

It is true chat the sets which can be condensed in a blocking system are the 

modules of the corresponding coherent system.  Such a set A can be replaced by a 

pseudo-element c. as we show in the following proposition. 

Proposition 3; 

Let  (C.P.K) be a blocking system and (C,*) - (C,P,K) . For any subset 

A c C , we have 

A is a. module of (C,^) <=>  A can be condensed in (C,P,K) 

=*• (C^P* ,<*) is a blocking system 

where 

C'   -   (C - A) U  {c }   ,  c       being a pseudo-element 

replacing the set   A 

?'  - {P |   P e P , PA - 0} U  {(P - A) U {cA}  |  P e P , PA + 0} 

K'   -  {K  |   K e K  , KA - 0} U  UK - A) U  {c  }   ]  K e  K  ,  KA + 0} 
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Proof; 

We dispense first with the uninteresting case in which    A    contains only 

inessential components.     Since the essential components of     (C,4i)     are    UP  , we see 

the proposition holds for any nonempty set    A    with    A c C - UP •  or equivalently, 

for    A    which contains only inessential components.    In this case,     P'  ■ P    and 

K'  - K . 

We may now assume  Che    A    at hand contains at  least one essential component, 

or equivalently,   that    A <£ C - UP .     Suppose    A    is a module of     (C,((>)   .     Using 

Proposition 2   (which remains valid in these circumstances), we have that 

(r,A) -   (A,P|A»Kj   )   , showing in particular that    A    can be condensed.    Conversely, 

if    A   can be condensed,   then    (A,P|A,Kj   )     is a blocking system.    To show    A    is 

a module of    (C,4»)   , we will show   R - PA U Q(C - A)    is a path of     (C,<Ji)    whenever 

P    and    Q    are rain paths of    (C,$)    which intersect    A .    See the proof of the 

difference lemma for remarks concerning the sufficiency of this condition which 

appears weaker than the modularity of    A .     Suppose there were such a 

R ■ PA U Q(C - A)    which is not a path.     Then    C - R   would be a cut and hence 

contain at least one rain cut, say    K .     Because in any coherent system every min 

path has a nonempty intersection with every min cut,  it follows that    KA 2 KQ 4 0  . 

We also see    (KA) (PA) - 0    because    PA c R    and    K c C - R .    This contradicts the 

hypothesis that     (A.PL.KL)    is a blocking system;    PA    and    KA    would be disjoint 

nonempty elements of    PL    and    K\      respectively. 

The assertion that     (C'.P',/(')    is a blocking system follows from 

Proposition 2; a coherent system    (C',i|»)     is defined there for which 

(C,^) -   (C^P'^IC')   .    An example showing  the converse is false,  namely,  showing that 

iC\P'tK')    is a blocking system    4> A    can be condensed,  is    C -  {1,2,3,4,5}   , 

P- {{1,3,5},{2,3.4}.{2,5},{1,4}}  ,  K-  {{1,3,5} ,{2,3,4},{1,2},{4,5}}    and 

A ■  {2,4}   .    Then     (C'.P',^)     is a blocking  system but    A    can not be condensed.   '! 
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The above proposition yields another characterization of modules in coherent 

systems which we believe should be isolated. 

Proposition A; 

Let  (C,(j)) be a coherent system. For any nonempty set A c C , we have A 

is a module of (C,$) if and only if 

either (1) A consists entirely of inessential components 

or    (2)  the families  PL  and K\      are the min paths and min cuts 

respectively of some coherent system with components A . 

Proof: 

Follows from Proposition 3.   ]| 

The significance of Proposition 3 is that it outlines how a blocking system 

might be decomposed into pseudo-elements.    For example,  this decomposition could be 

the one Indicated by the maximal modules partition theorem of Section 1. 

As for applying the ideas surrounding blocking systems to coherent systems,  it 

seems there might emerge a useful tool in computing system reliability for certain 

coherent systems, namely,  those whose corresponding blocking system satisfies a 

length-width inequality  (see  [7]). 
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